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Abstract: Testing plays significant role in the development of software. Testing is done with the help of test 

cases. The aim of test cases is to find the errors in the program. Genetic Algorithm is heuristic methods used for 

the optimization of test cases. GA is an iterative process. In each generation, it is the responsibility of GA to 

select fit individuals from the pool of individuals and discard the unfit individuals. The process of mutation and 

crossover is responsible for the selection of individuals for the next generation. In each generation, some 

individuals/chromosomes are combined using a crossover operator. After mutation, a new population is selected 

from the offspring and the original population.  In this paper, we have applied genetic algorithm to optimize test 

cases on program i.e. HCF of two numbers. The best test case comes out to be (7, 2) with fitness value 140. The 

purpose of this paper is to provide optimized results by improving the efficiency of GA. 
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1. Introduction 

Genetic Algorithm (GA) is a famous evolutionary search optimization methodology that imitates the 

natural processes of evolution to evolve answers to problems that have big search spaces. The genetic 

algorithm follows the biological evolution mechanism to find large and complex search spaces [1, 2]. John 

Hollad developed a genetic algorithm at the Michigan University in 1970's. Salvatore Mangano defined 

GA as “Genetic Algorithms are good at taking large, potentially huge search spaces and navigating them, 

that looks for optimal combinations of things, solutions you might not otherwise find in a lifetime” [3]. 

There are many Evolutionary Algorithms which are shown in figure 1. 
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Figure 1. The EA Family 

EA: Evolutionary Algorithms; GA: Genetic Algorithms; GP: Genetic Programming;  

ES: Evolutionary Strategies; EP: Evolutionary Programming.  

GA is a nature-inspired algorithm that converts the task of test case generation into an optimal solution [4]. 

There are many techniques of test case minimization have been suggested by the researchers. In this work, 

the focus will be on the Genetic Algorithm search technique to minimize the test cases. We will propose a 

more effective technique of fitness scaling in the Genetic Algorithm to make the test case minimization 

model [5, 6]. 

Depending on the biological evolution mechanism; the Genetic algorithm is a random and directed search 

algorithm that is aimed to find large and complex search spaces. 

 2. Different Search Optimization Techniques  

There are many search optimization techniques (as shown in figure 2). The major techniques are an 

enumerative and random search [7, 8]. Every point of the search space is evaluated by enumerative 

techniques to get the most favorable result. An example of enumerative search techniques is dynamic 

programming. On the other hand, additional information concerning the search space used by guided 

random search techniques to guide the search process to reach an optimal solution in less time. The genetic 

algorithm is type of a guided random search technique [9]. 
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Figure 2. Classes of Search Techniques  

3.    Process and Algorithm of Genetic Algorithm  

GA is a repetitive activity in which each repetition is known as "Generation". Each generation is 

responsible for selecting better and fit individuals from a large population of individuals (known as 

"chromosomes") and throwing away individuals who are less fit [10]. 

Actually, by maintaining a population of different individuals, GA carries out a multi-directional search 

and also knowledge interchange among these individuals. A simulated evolution is performed by 

individuals. By simulated evolution, we mean to say that relatively good individuals reproduce at each 

subsequent generation while relatively bad individuals die. An objective function is used to differentiate 

among individuals. 

The selection of individuals is done by the process of mutation and crossover. In each generation, some 

chromosomes are combined using a crossover operator. Some of the individuals of this set are mutated and 

then the selection process is used to opt the new population from the children and the original population. 

Combination and selection are guided by the fitness function i.e. the chromosomes having more fitness 

value will have more chance to be selected and combined [11]. The pseudo-code of GA can be written as: 

Pseudo-code of Genetic Algorithm 

Initialize the population;  

Assess the population (Using the given fitness function);  

While Stopping Condition Not Gratified                

{   

Choose chromosomes for reproduction;   

Carry out crossover and mutation;  

Assess population;        

} 

3.1   Steps involved in Genetic Algorithm  

As per the pseudo-code, the main components and their functionalities required to implement the genetic 

algorithm [12] are:-  

Step 1. A Genetic Representation (Chromosomes) for Potential Solutions to the Problem 

The chromosome is the word derived from natural genetics. These are the genetic representation of the 

individuals in a population which are also known as strings. Chromosomes are made of units called genes 

(or characters or alleles). Binary string or any other data structure acts as a gene in the chromosome. The 

primary population of chromosomes can be randomly generated with their length depending on the 

required precision. 
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Step 2. Initial Population for Potential Solutions 

The initialization process is very simple and a population of chromosomes is created where each 

chromosome can be encoded either in binary form or in any other form depending on user requirement. 

Usually, first generation of chromosome is randomly generated. 

Step 3. Evaluation Method 

Evaluation method evaluates the fitness value of chromosomes. This fitness value of chromosomes 

describes their perfectness in meeting the particular objective. Fitness function is the function that needs to 

be optimized and we apply the genetic algorithm for its optimization. Fitness function can either be 

minimized or maximized according to our requirements. 

 

Step 4. Genetic Operators 

After the selection of best individuals using evaluation function; genetic operators are applied to them to 

form the next generation i.e. to form the children of the previous generation. These operators alter the 

composition of children to make them better in each successive generation. The operators used are: 

a) Crossover 

b) Mutation  

Crossover: - The crossover operator creates two new chromosomes (child) by exchanging genes from two 

chromosomes (parents). The crossover probability (pc) is set by the user, According to which crossover 

occurs. A random number (r) is generated in the range [0, 1] and the crossover is applied to parents only if 

pc>r. It increases the exploitation of the search space. For example:   

            Chromosome 1 = (r1, r2, r3, r4, r5),   

Chromosome 2 = (s1, s2, s3, s4, s5) 

Crossing the chromosomes after the second gene would produce the offspring.        

Progeny 1 = (r1, r2, s3, s4, s5),  

Progeny 2 = (s1, s2, r3, r4, r5)  

Mutation:-It alters one or more genes of a chromosome and creates one new chromosome [13]. The 

mutation is an adjustable parameter and it takes place according to a mutation probability (pm). A random 

number (r) is generated in the domain [0, 1] for each bit within the chromosome and mutation is applied on 

the bit only if (pm>r). It increases the exploration in the search space. For example:  

Chromosome = 1001100111  

The offspring after mutation becomes:  

Offspring = 1011100101  

 

Step 5. Values of various Parameters 

Various parameter values need to be decided while applying the genetic algorithm to a problem. The 

parameters which are to be set includes: – 

 Size of chromosomes.  

 Population size.  

 Crossover probability (usually set at 0.6).  

 Mutation probability (usually set at 0.01).  

 Number of generations. 

The main advantage of the Genetic algorithm over conventional searching techniques is its robustness. GA 

does not break easily even if there is some noise or when the inputs get changed. So, GA may provide 

significant benefits in searching large search spaces over typical search optimization techniques [14, 15]. 
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4. Result Discussion 

The application of GA for various generations has been shown in tables. The values of these tables are 

obtained after the execution of the program i.e. HCF of two numbers using MATLAB programming 

platform version 2016a.  

 

Table 1. Fitness Finding for Generation 1 

S. No.  Test Cases  F  Pi  Ci  Random No.  N  M  

1 11, 12 108 0.1698 0.1698 0.4387 3 3 

2 6, 10 140 0.2201 0.3899 0.3816 2 2 

3 14, 3 172 0.2704 0.6604 0.7655 4 4 

4 3, 12 76 0.1195 0.7799 0.7952 5 5 

5 15, 12 140 0.2201 1.0000 0.1869 2 2 

 

Table 2. Crossover and Mutation for Generation 1 

S. No.  N  M  Crossover  Mutation  

1 3 3 (15, 2) (14, 3) 

2 2 2 (10, 6) (6, 10) 

3 4 4 (12, 3) (3, 12) 

4 5 5 (15, 12) (15, 12) 

5 2 2 (6, 10) (6, 10) 

 

Table 3. Fitness Finding for Generation 3 

S. No.  Test Cases  F  Pi  Ci  Random No.  N  M  

1 10, 6 172 0.2251 0.2251 0.8212 5 5 

2 15, 12 140 0.1832 0.4084 0.0154 1 1 

3 15, 12 140 0.1832 0.5916 0.0430 1 1 

4 15, 12 140 0.1832 0.7749 0.1690 1 1 

5 10, 6 172 0.2251 1.0000 0.6491 4 4 
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Table 4. Crossover and Mutation for Generation 3 

S. No.  N  M  Crossover  Mutation  

1 5 5 (10, 6) (10, 6) 

2 1 1 (14, 2) (14, 2) 

3 1 1 (14, 2) (14, 2) 

4 1 1 (14, 2) (14, 2) 

5 4 4 (15, 12) (12, 15) 

 

Table 5.  Fitness Finding for Generation 50 with Simple GA 

S. No.  Test Cases  F  Pi  Ci  Random No.  N  M  

1 7, 2 140 0.2448 0.2448 0.4896 3 3 

2 2, 7 108 0.1888 0.4336 0.2698 2 3 

3 2, 3 108 0.1888 0.6224 0.9897 5 5 

4 7, 2 140 0.2448 0.2448 0.4896 3 3 

5 2, 3 108 0.1888 1.0000 0.8617 5 5 

 

The best test case out of five randomly generated test cases is (7, 2) with fitness value = 140 but it can 

easily be seen that this is not the best test case because the criteria for the selection of best test case it must 

come several time in a single run with maximum fitness value. So, it is clear that simple GA sometimes 

leads to premature convergence of individuals which is the main drawback of simple GA. 

 

 5. Conclusion 

In software testing, many times redundant test cases are used for a small piece of code. Testing is a tedious 

task and it requires more effort and time. Mostly numbers of defects are not uniformly distributed in COTS 

and defect that does not occur frequently requires more effort to remove. So, test case minimization 

techniques with proper test plans are required. To increase the efficiency of testing, a more effective way 

has been introduced, which saves a lot of time and resources i.e. GA. GA is the ever-emerging technique of 

great importance for researchers in testing. By application of GA on test cases, we found best test case is 

(7, 2) with fitness value 140. In future, we will work on limitation of GA by applying fitness scaling on 

GA. 
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