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 Abstract: In this paper we consider the following fractional order boundary value problem with 
Sturm-Liouville type boundary conditions  

  𝐶𝐷0+
r u(t)=f(t, u(t)) 

 
𝑎𝑢(0) = 𝑏𝑢′(0),

𝑐𝑢(1) = −𝑑𝑢′(1),
 

 
where  𝐶𝐷0+

r  denotes Caputo fractional derivatives of order 1 < r ≤ 2, and established existence of unique 

solution by Banach contraction mapping therem and also studied Hyers-Ulam stability.  
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1  Introduction 
 Fractional differential equations has recently attracted many researchers due to its wide applications [9, 

11, 26] in engineering, technology, biology and so on. Establishing existence of solutions for fractional differential 
equations together with boundary conditions has been carried out by researchers [8, 12, 13, 14, 15, 23, 24, 25].  

In the recent years, the study of differential equations of fractional order has been in the limelight by many 
researchers in the areas of applied sciences, such as engineering, physics, biology and economics. This is basically 
because, it finds applications in several real world problems. For details on the theory and some applications of 
fractional differential equations, see the monographs of [11, 16, 19, 26]. In the qualitative theory of differential 
equations, various theorems have been extensively deployed by researchers in establishing the existence and 
uniqueness of solutions to both the initial and boundary value problems. In [22], Srivastava et al. studied the hybrid 
fixed point theorems of Krasnosel’skii type, which involve product of two operators in partially ordered normed 
linear spaces and applied to fractional integral equations for establishing the existence of solutions under certain 
monotonicity conditions blending with the existence of the upper or lower solution. 

Babakhani and Baleanu [5] considered the following nonlinear fractional order differential equations  

(𝐷𝛼 − 𝜌𝑡𝐷𝛽)(z(𝑡)) =  𝑓(𝑡, z(𝑡), 𝐷𝛾(z(𝑡))), 𝑡 ∈ (0,1), 1 < 𝛼 ≤ 2, 0 < 𝛽 + 𝛾 ≤ 𝛼,

z(0) =  z0, z(1) = z1,
(1.1) 

 also studied  

(𝐷𝛼 − 𝜌𝑡𝐷𝛽)(z(𝑡)) = 𝑓(𝑡, z(𝑡), 𝐷𝛾(z(𝑡))), 𝑡 ∈ (0,1), 1 < 𝛼 ≤ 2, 0 < 𝛽 + 𝛾 ≤ 𝛼,

z(0) = z0, z′(0) = 1,
(1.2) 

 and derived necessary conditions for the existence of solutions for (1.1) and (1.2). Recently, Anber et al. [4] 
studied the infinite system of fractional order two-point boundary value problem  

 
𝐷𝛼(z(𝑡)) + 𝑓(𝑡, z(𝑡)), 𝑡 ∈ (0,1), 𝛼 ∈ (1,2),

z(0) = ∫
1

0
𝑔(𝑠)z(𝑠)𝑑𝑠, z(1) = 0,

 (1.3) 

 and established existence of solutions. 
Fixed point theory is one of the most important area of research in Mathematics. In recent years, many 

results related to fixed point theorems in ordered metric spaces are established in [1, 2, 3, 18, 21] and etc. The 
results in this line was obtained by Ran and Reurings[20]. Subsequently, Nieto and Rodriguez-Lopez[17] extended 
the results by omitting the continuity hypothesis and applied their result to obtain a unique solution to a first order 
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ordinary differential equation with periodic boundary conditions. Latter, Bhaskar and Lakshmikantham [7] 
established several coupled fixed point theorems for mixed monotone mappings defined on partially ordered 
complete metric spaces. 

Motivated by the works mentioned above, in this paper we study the following fractional order differential 
equation  

 𝐶𝐷0+
r u(t)=f(t, u(t)) 

𝑎𝑢(0) = 𝑏𝑢′(0),

𝑐𝑢(1) = −𝑑𝑢′(1),
                            (1.4) 

 where  𝐶𝐷0+
𝑟  is left sided Caputo fractional derivative of order 𝑟, 1 < 𝑟 ≤ 2, 𝑓 ∈ 𝐶([0,1] × [0, +∞), [0, +∞)), 

𝑎, 𝑏, 𝑐, 𝑑 are real positive constants and established necessary conditions for the existence of solutions by applying 
Banach contraction mapping theorem. 

 

2  Preliminaries 
 In this section, we provide some definitions and lemmas which are needed in the latter discussion. 

Definition 2.1 [9] Let 𝛼 ∈ (0, +∞). The operator 𝐼
𝑎+
𝛾  defined on 𝐿1[𝑎, 𝑏] by  

 𝐼
𝑎+
𝛾

𝑓(𝑡): =
1

Γ(𝛾)
∫

𝑡

𝑎
(𝑡 − 𝑠)𝛾−1𝑓(𝑠)𝑑𝑠, 

  for 𝑡 ∈ [𝑎, 𝑏], is called the left sided Riemann-Liouville fractional integral of order 𝛾. Under same hypotheses, 
the right-sided Riemann-Liouville fractional integral operator is given by  

  𝑏−𝐼𝛾𝑓(𝑡): =
1

Γ(𝛾)
∫

𝑏

𝑡
(𝑠 − 𝑡)𝛾−1𝑓(𝑠)𝑑𝑠. 

Definition 2.2. [9] Suppose 𝛾 > 0 with 𝑛 = [𝛾] + 1. Then the left and right sided Caputo fractional derivatives 
defined on absolutely continuous functions space 𝐴𝐶𝑛[𝑎, 𝑏] are given by  

 (𝐶𝐷
𝑎+
𝛾

𝑓)(𝑡) = (𝐼
𝑎+
𝑛−𝛾

𝐷𝑛𝑓)(𝑡),   (𝑏−
𝐶 𝐷𝛾𝑓)(𝑡) = (−1)𝑛(𝑏−𝐼𝑛−𝛾𝐷𝑛𝑓)(𝑡), 

where 𝐷𝑛: =
𝑑𝑛

𝑑𝑡𝑛.  

Theorem 2.3. [Banach, [6]] Let 𝑋 be a nonempty set and let 𝑑 be a metric on 𝑋 such that (𝑋, 𝑑) forms a 
complete metric space. If the mapping 𝐹: 𝑋 → 𝑋 satisfies  

 𝑑(𝐹𝑢, 𝐹𝑣) ≤ 𝑘𝑑(𝑢, 𝑣)  for some  0 < 𝑘 < 1  for all  𝑢, 𝑣 ∈ 𝑋, 
then there is a unique 𝑤 ∈ 𝑋 such that 𝐹𝑤 = 𝑤.  
Definition 2.4 [10] The problem (1.4) is called Hyers-Ulam stable whenever there exists a real constant > 0 such 
that, for each 𝜀 > 0 and z(𝑡) ∈ 𝐶([0,1], ℝ) satifying  

 | 𝐶𝐷0+
𝑟 𝑢(𝑡) − 𝑓(𝑡, 𝑢(𝑡))| < 𝜀  for all  𝑡 ∈ [0,1], 

there is a solution û(𝑡) ∈ 𝐶([0,1], ℝ) of problem (1.4) such that  

 |z(𝑡) − û(𝑡)| < 𝜀  for all  𝑡 ∈ [0,1]. 
 Theorem 2.5. Let 𝑉 ∈ 𝐶([0,1], ℝ). Then the boundary value problem  

  𝐶𝐷0+
𝑟 (𝑢(𝑡)) + 𝑉(𝑡) = 0, 0 < 𝑡 < 1, (2.1) 

  

 
𝑎𝑢(0) = 𝑏𝑢′(0),

𝑐𝑢(1) = −𝑑𝑢′(1),
 (2.2) 

 has a unique solution  

 𝑢(𝑡) = ∫
1

0
𝒦(𝑡, 𝑠)𝑉(𝑠)𝑑𝑠, (2.3) 

 where  

 𝒦(𝑡, 𝑠): = {
𝒦1(𝑡, 𝑠),    0 ≤ 𝑠 ≤ 𝑡 ≤ 1,1.2𝑚𝑚

𝒦2(𝑡, 𝑠),   0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
 (2.4) 

 and  

 𝒦1(𝑡, 𝑠) = 𝐺2(𝑡, 𝑠) −
(𝑡−𝑠)𝑟−1

Γ(𝑟)
, 

 

 𝒦2(𝑡, 𝑠) =
Δ

Γ(𝑟)
[𝑐(1 − 𝑠)𝑟−1 + 𝑑(𝑟 − 1)(1 − 𝑠)𝑟−2](𝑎𝑡 + 𝑏), 

and  Δ = (𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐)−1.   
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Proof. The equivalent integral equation to (2.1) is given by  

 𝑢(𝑡) = 𝐶1 + 𝐶2𝑡 − ∫
𝑡

0

(𝑡−𝑠)𝑟−1

Γ(𝑟)
𝑉(𝑠)𝑑𝑠. 

By the boundary conditions (2.2), we can determined 𝐴 and 𝐵 as  

 𝐶1 =
Δ𝑏

Γ(𝑟)
∫

1

0
[𝑐(1 − 𝑠)𝑟−1 + 𝑑(𝑟 − 1)(1 − 𝑠)𝑟−2]𝑉(𝑠)𝑑𝑠, 

 

 𝐶2 =
Δ𝑎

Γ(𝑟)
∫

1

0
[𝑐(1 − 𝑠)𝑟−1 + 𝑑(𝑟 − 1)(1 − 𝑠)𝑟−2]𝑉(𝑠)𝑑𝑠. 

Thus, we have  

 

𝑢(𝑡) =
Δ

Γ(𝑟)
∫

1

0
[𝑐(1 − 𝑠)𝑟−1 + 𝑑(𝑟 − 1)(1 − 𝑠)𝑟−2](𝑎𝑡 + 𝑏)𝑉(𝑠)𝑑𝑠

5𝑐𝑚 −
1

Γ(𝑟)
∫

𝑡

0
(𝑡 − 𝑠)𝑟−1𝑉(𝑠)𝑑𝑠

= ∫
1

0
𝒦(𝑡, 𝑠)𝑉(𝑠)𝑑𝑠.

 

Therefore,  

 𝑢(𝑡) = ∫
1

0
𝒦(𝑡, 𝑠)𝑉(𝑠)𝑑𝑠. 

 

Theoremn 2.6. The Green’s function 𝒦(𝑡, 𝑠) has the following properties:   

    (i) 𝒦(𝑡, 𝑠) is continuous on [0,1] × [0,1],  

    (ii) for 𝑟 >
2𝑎+𝑏

𝑎+𝑏
, we have 𝒦(𝑡, 𝑠) > 0 for any 𝑡, 𝑠 ∈ [0,1],  

    (iii) for 𝑟 >
2𝑎+𝑏

𝑎+𝑏
, we have 𝒦(𝑡, 𝑠) ≤ 𝒦(𝑠, 𝑠) for 𝑡, 𝑠 ∈ [0,1],  

    (iv) 𝒦(𝑠, 𝑠) ≤ 𝒦(𝑡, 𝑠) for 𝑡, 𝑠 ∈ [0,1], where  

 = min {
𝑏𝑑(𝑟−1)−𝑎(𝑐+𝑑)

𝑏𝑐+𝑏𝑑(𝑟−1)
,

𝑏

𝑎+𝑏
}. 

 

   

Proof. (i) is evident. We prove (ii). 
For 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, we have  

 
𝜕𝒦1(𝑡,𝑠)

𝜕𝑡
=

𝑎Δ

Γ(𝑟)
[𝑐(1 − 𝑠)𝑟−1 + 𝑑(𝑟 − 1)(1 − 𝑠)𝑟−2] −

(𝑟−1)(𝑡−𝑠)𝑟−2

Γ(𝑟)
 

and  

 
𝜕2𝒦1(𝑡,𝑠)

𝜕𝑡2 =
(𝑟−1)(2−𝑟)(𝑡−𝑠)𝑟−3

Γ(𝑟)
≥ 0. 

This shows that 
𝜕𝒦1(𝑡,𝑠)

𝜕𝑡
 is increasing on 𝑡 ∈ [𝑠, 1]. So by 𝑟 >

2𝑎+𝑏

𝑎+𝑏
, we have  

 

𝜕𝒦1(𝑡,𝑠)

𝜕𝑡
≤

𝜕𝒦1(1,𝑠)

𝜕𝑡

=
𝑎Δ

Γ(𝑟)
[𝑐(1 − 𝑠)𝑟−1 + 𝑑(𝑟 − 1)(1 − 𝑠)𝑟−2] −

(𝑟−1)(1−𝑠)𝑟−2

Γ(𝑟)

≤
𝑎𝑐Δ+(𝑎𝑑Δ−1)(𝑟−1)(1−𝑠)𝑟−2

Γ(𝑟)
≤ 0.

 

Then 𝒦1(𝑡, 𝑠) is decreasing with respect to 𝑡 on [𝑠, 1], we get  

 𝒦1(1, 𝑠) ≤ 𝐺1(𝑡, 𝑠) ≤ 𝒦1(𝑠, 𝑠). 
Similarly, we can have  

 0 < 𝒦2(0, 𝑠) ≤ 𝒦2(𝑡, 𝑠) ≤ 𝒦2(𝑠, 𝑠). 
From the proof of (ii), we have 𝒦(𝑡, 𝑠) ≤ 𝐺(𝑠, 𝑠). Moreover, we have  

 𝜅(𝑠) ≤ 𝒦(𝑡, 𝑠) ≤ 𝐺(𝑠, 𝑠), 
where  

 𝜅(𝑠): = {
𝒦1(1, 𝑠),0.6𝑐𝑚0 ≤ 𝑠 <

𝑎𝑑(2−𝑟)+𝑏𝑐

𝑎𝑑+𝑏𝑐
, 1.2𝑚𝑚

𝐺2(0, 𝑠),0.6𝑐𝑚
𝑎𝑑(2−𝑟)+𝑏𝑐

𝑎𝑑+𝑏𝑐
≤ 𝑠 < 1.

 

Since  

 
𝒦1(1,𝑠)

𝒦(𝑠,𝑠)
≤

𝑏𝑑(𝑟−1)−𝑎(𝑐+𝑑)

𝑏𝑐+𝑏𝑑(𝑟−1)
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and  

 
𝒦2(0,𝑠)

𝐺(𝑠,𝑠)
=

𝑏

𝑎𝑠+𝑏
≥

𝑏

𝑎+𝑏
, 

This completes the proof.  

  

3  Main Results 
 In this section we establish the existence and uniqueness of solutions by an application of fixed point 

approaches.   
Theorem 3.1. Let 𝐿 be a nonnegative constant such that  

 |𝑓(𝑡, u) − 𝑓(𝑡, v)| ≤ 𝑀|u − v|  ∀  (𝑡, u), (𝑡, v) ∈ [0,1] × ℝ. 
 

 𝑀 ∫
1

0
|𝒦(𝑠, s)|𝑑s < 1, (3.1) 

 then the BVP (1.4) has a uniqe nontrivial solution in 𝐶[0,1].   

Proof. Consider the operator 𝒫: 𝐶[0,1] → 𝐶[0,1] defined by  

 (𝒫𝑢)(𝑡) = ∫
1

0
𝒦(𝑡, s)𝑓(s, 𝑢(s))𝑑s. 

In view of (2.3) we wish to show that there exists a unique 𝑢 ∈ 𝐶([0,1]) such that 𝒫𝑢 = 𝑢. Every such solution 
will also lie in 𝐶1([0,1]) as can be directly shown by differentiating (2.3) and confirming the continuity. 

To establish the existence and uniqueness to 𝒫𝑢 = 𝑢, we show that the conditions of Theorem 2 hold. 
Consider the pair (𝑋, 𝑑) = (𝐶[0,1], 𝑑) which forms a complete metric space. For 𝑢1, 𝑢2 ∈ 𝐶([0,1]) and 𝑡 ∈
[0,1], consider  

 

|(𝒫𝑢1)(𝑡) − (𝒫𝑢2)(𝑡)| ≤  ∫
1

0
|𝒦(𝑡, s)||𝑓(𝑡, 𝑢1(𝑠)) − 𝑓(𝑡, 𝑢2(𝑠))|𝑑s

≤  𝑀 ∫
1

0
|𝒦(𝑡, s)||𝑢1(𝑠) − 𝑢2(𝑠)|𝑑s

≤  𝑀𝑑(𝑢1, 𝑢2) ∫
1

0
|𝒦(𝑠, s)|𝑑s

≤  𝑀 ∫
1

0
|𝒦(𝑠, s)|𝑑s 𝑑(𝑢1, 𝑢2).

 

Taking the maximum of both sides of the above inequality over [0,1] we thus have for all 𝑢1, 𝑢2 ∈ 𝐶([0,1]),  

 𝑑(𝐹𝑢1, 𝐹𝑢2) ≤ 𝑀 ∫
1

0
|𝒦(𝑠, s)|𝑑s 𝑑(𝑢1, 𝑢2), 

and in light of (3.1) we see that 𝐹 satisfies all of the conditions of Theorem 2. Thus, the operator T has a unique 
fixed point in 𝐶([0,1]). This solution is also in 𝐶1([0,1]) and we have equivalently shown that the BVP (1.4) has a 
unique (nontrivial) solution.  

Theorem 3.2. Let 𝑀 be a nonnegative constant such that  

 |𝑓(𝑡, u) − 𝑓(𝑡, v)| ≤ 𝑀|u − v|  ∀  (𝑡, u), (𝑡, v) ∈ [0,1] × ℝ. 
Then the boundary value problem (1.4) is Hyers-Ulam stable if for each 𝜀 > 0, the solution û(𝑡) of the boundary 
value problem (1.4) satisfies the following inequality  

 |û(𝑡) − ∫
1

0
𝒦(𝑡, s)𝑓(s, û(s))𝑑s| < 𝜀. 

  

Proof. Let û(𝑡) be the unique solution of the problem (1.4). Then, we have  

 

|û(𝑡) − z(𝑡)| =  |û(𝑡) − ∫
1

0
𝒦(𝑡, s)𝑓(s, û(s))𝑑s

− ∫
1

0
𝒦(𝑡, s)𝑓(s, u(s))𝑑s + ∫

1

0
𝒦(𝑡, s)f(s, û(s))𝑑s|

≤  𝜀 + ∫
1

0
𝒦(𝑡, s)|f(s, û(s)) − f(s, u(s))|𝑑s

≤  𝜀 + 𝑀 ∫
1

0
|𝒦(s, s)||û(s) − u(s)|𝑑s

≤  𝜀 + 𝑀 ∫
1

0
|𝒦(𝑠, s)|𝑑s ∥ û − u ∥,

 

which implies that ∥ û − u ∥≤ 𝜀, where = [1 − 𝑀 ∫
1

0
|𝒦(𝑠, s)|𝑑s]

−1

. This completes the proof.  

   

 𝐶𝐷
0+
1.5𝑢(𝑡)=

 𝑓(𝑡, 𝑢(𝑡)),𝑐𝑢(1)= −𝑑𝑢′(1), (3.2) 

  where  
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 𝑓(𝑡, 𝑢(𝑡)) =
1

(50𝑒4𝑡+1)(1+|𝑢(𝑡)|)
. 

It can be seen that all conditions of Theorem 3 and Theorem 3 are satisfied. Hence, the BVP (3.2) has a nontrivial 
unique solution and is Hyers-Ulam stable. 
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